694

the dispersive regime. It would appear that a more de-
tailed examination of these theories is needed before any
of their results can be used as a standard for comparison
when 2//t~1.
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Accurate Solution of Microstrip and Coplanar
Structures for Dispersion and for
Dielectric and Conductor Losses

D. MIRSHEKAR-SYAHKAL anp J. BRIAN DAVIES, MEMBER, IEEE

Abstract—For the analysis of coplanar- and microstrip-type structures,
a higher order solution of the spectral-domain approach is introduced.
Legendre polynomials are used as the basis functions for fields having
singularitics near the edges, leading to fast convergence to the exact
solution. A perturbation technique is combined with the spectral-domain
method to evaluate conductor and dielectric losses in microstrip, inverted
microstrip, and coupled microstrip in the metallic enclosure. Computations
of characteristic impedance and losses incurred in several structures are
also presented. Central processing unit (CPU) time on an IBM 360 /65 for
the zeroth-order approximation ranges from 1 to about 5 s for the whole
computation, and increases if higher order of solution is requested for
better accuracy. The calculation of attenuation due to conductor losses is
found to be particularly sensitive to order of approximation, so that the
generally used “zeroth-order” solution is inadequate. A user-oriented
program package has been written, including options on order of mode,
order of solution (i.e., of approximation), impedance, attenuation, and
number of substrates. Although written for single or coupled microstrip,
the program can be adapted for arbitrary arrangements of thin coplanar
conductors. The program is described separately.

Manuscript received August 14, 1978; revised March 28, 1979.
The authors are with the Department of Electronic and Electrical
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I. INTRODUCTION

HE WIDESPREAD use of MIC’s in recent years

has caused rapid progress in the theory and technol-
ogy of it. The very first transmission line used in MIC
was, indeed, microstrip laid on the dielectric substrate,
and then other transmission lines such as slot line, sus-
pended microstrip, and so on, were introduced and im-
proved.

Initially, the analysis for this class of transmission line
was invariably a quasi-TEM approximation, except for
slot line where Cohn [1] introduced a frequency depen-
dent solution because of its different nature. Although a
quasi-TEM solution at low frequency can yield satisfac-
tory ‘results, at high frequency its weakness becomes ap-
parent. To feature the frequency dependence of these
lines, one must consider a hybrid mode analysis which in
turn is more tedious, and in some cases requires enormous
computing time. This dispersion analysis was studied by
various workers and by various methods. For instance,

0018-9480,/79/0700-0694$00.75 ©1979 IEEE
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Fig. 1. Shielded multilayer dielectric with arbitrary coplanar

conductors.

Mittra and Itoh [2] solved shielded microstrip problems
via an integral equation, and Denlinger [3] cast the open
version of it into the spectral domain and then solved the
transcendental equations by means of a coupled integral-
equation method.

In 1973 and 1974, Itoh and Mittra [4], [5] used a
spectral-domain approach together with Galerkin’s
method to solve both shielded and unshielded microstrip.
This combination reduced computing time drastically in
contrast to the other (integral-equation) methods which
required much computing time, as well as memory. This
theory was developed and modified for multilayers and
multiconductor structures by the authors [6] where a
transfer matrix fulfills all the boundary conditions be-
tween successive dielectric layers. This approach has now
been extended further by the authors, by including and
studying 1) the calculation of attenuation due to dielectric
and conductor loss, 2) calculation of characteristic imped-
ance, 3) inclusion of Legendre polynomials, as well as
trigonometric basis functions for the field or current den-
sity, 4) convergence for various orders of matrix and
number of basis functions, and 5) consideration of higher
order modes, as well as the cutoff free mode. To amplify
on 4) above, the method converges rapidly to the “exact”
solution of the zero thickness, perfectly conducting struc-
ture of Fig. 1. Subject only to small tan § of the dielectric,
and high conductivity of the metal, calculation of losses
are also “exact in the limit”, and do not involve empirical
approximations (as, for instance, in Jansen [20]).

As part of this study, a user-orientated program
package has been developed and is described elsewhere
[21] for the above calculation, with options on various
coplanar conductors on singular or multilayer substrates.
Results have been checked against most available struc-
tures such as slot line, coupled microstrip, suspended or
shielded inverted microstrip, and so on. The importance
of the losses in the MIC is a significant point which can
be quantified by this method. Dielectric and conductor
losses are both investigated through a perturbation for-
mulation. Conductor losses are found to be particularly
sensitive to choice of basis function, and some earlier
theories are found to be inadequate.
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II. THEORY

As the finite spectral-domain theory has been described
for shielded microstrip [5] and generalized for shielded
multilayer multiconductor structures [6], just a brief re-
view is given here. Fig. 1 shows a generic cross section of
multilayer and multiconductor structure. Potential func-
tions and, consequently, fields in each layer can be wrilten
as follows:

kr— B2 )
E,=j glﬂ—ﬁ) Yl (x,y)e 7P
2 p2
Hzi=j—(—]iﬁi)x[/ih(x,y)e_fﬁz, i=1,2,---,n+1. (1)

Casting the above fields in the spectral domain, by finite
Fourier transform in the x direction, and satisfying
boundary conditions at the interfaces of the consecutive
layers, leads to the following matrix form:

Jx
J

z

~

E

z

Gll
G21

G
Gy

)

~

E

X

where tilda (7) specifies fields or currents in the spectral
domain. A dual form of the above matrix representation is
given by

Hll HIZ E~z = jx (3)
H21 H22 Ex jz

E, and J, used in both matrixes are transforms of the
electric field and current density at the interface where the
conductors are laid. Whether it is advantageous to use (2)
or (3) depends upon the type of conductor arrangement;
for instance, in the shielded microstrip case, (2) is pre-
ferred and in the case of shielded slot, (3). Both matrix
forms can be employed for any problem, but accurate
results given by one of them may be obtained easier and
faster. This matter will be clarified later on in the script.

Consider (3) and let E, and E, be expressed in terms of
a complete set of basis functions, truncated to

E = Z=l a,E., (x)
Qo
E,= 2=1 b,,E,.(x). 4)

After transformation of E, and E, into the spectral
domain, substituting into (3) and using Galerkin’s method
as well as Parseval’s theorem, the result is a set of P+ (@
homogeneous simultaneous equations with P+ Q un-
known, whose nontrivial solution yields the propagation
constant of the structure.

A. Basis Functions and Convergence

To approximate either fields or currents across the
interface where conductors are laid, a complete sel of
functions is required. Legendre polynomials are used for
those having unbounded behavior near edges, while trigo-
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Fig. 2. Dependence of propagation constant on matrix order (P+ Q)
and number of Fourier terms (n).

nometric functions are employed for bounded fields. Both
functions have Fourier transforms in closed form. Use of
Legendre polynomials may be justified if the generating
function is considered, which is given by

[se]
(1-2t x+3)7"*= 3 P (x)¢t"
n=0
and in the limit #—1:

(20-%) 7= 3 £,) ®

where the left side indicates a singularity similar to that
occurring in this type of problem [7]. Therefore, by choos-
ing Legendre polynomials it is expected to have a fast
convergence to the related fields. To test the convergence,
two different problems are treated; the first one is micro-
strip and the second is shielded coplanar waveguide.
From this discussion and the consideration of Fig. 2, the
following expansions are valid:

P

Ex= 2 aum—l{(x_w_t)/t}
m=1

E, = § b,, sin {mm(x—w)/2t}, w< x| <w+2t.
me=1

(6)

The rest of the spectral-domain solution continues as
described above in the text. A computer program imple-
menting the calculation has been developed, and the re-
sults are depicted in Fig. 2(a) and (b) for various orders of
matrix (order=P+ Q, P=), and number of Fourier
terms. Fig. 2(a) shows how the results improve by increas-
ing the number of Legendre polynomials and virtually
complete convergence is obtained by introducing a matrix
of order 8 if an error of 1 percent or better is acceptable.
From Fig. 2(b), where curves for shielded coplanar wave-
guide are sketched, we see the convergence with increas-
ing order of matrix and number of Fourier terms. Solu-
tions have also been obtained with P#=Q and sometimes

this is advantageous, such as for very accurate results with
microstrip at low frequencies. It is found that in structures
where the field or current is approximated over a small
distance, a good solution can be achieved by a low order
of matrix, or even the zeroth-order solution [5], [6]. Conse-
quently, these results highlight the advantages of either (2)
or (3) in relevant problems. Results have been checked
against [5], [6], and [8], always with very good agreement.
Central processing unit (CPU) time clearly depends on the
number of regions, order of matrix and number of Fourier
terms. Usually for a matrix of order 8, CPU time will not
exceed 5 s per point.

B. Higher Order Modes

At a high frequency of operation, existence of an en-
closure causes propagation of higher order modes. To
show the capability of the spectral-domain approach in
analyzing these modes, shielded microstrip is brought
under examination, and results are compared with those
issued by Yamashita [8] and Mittra [2].

Comparison with Yamashita (who employed the in-
tegral-equation method with nonuniform discretization)
gave agreement within the readability of the quoted re-
sults. Mittra used almost the same techniques, but near
the end of the analysis he casts the obtained equations
into a new form, (i.e., into “auxiliary” equations) where in
turn, this new set of equations gives the opportunity of
rapid convergence due to the asymptotic decrease of their
coefficients.

Between the dominant and the first high-order modes
of Fig. 3, Mittra [2] gives an additional mode. Our
spectral-domain program also gives a solution close to
Mittra’s, but study of the associated electric field across
the air—dielectric interface shows it to be a spurious
nonphysical solution. Ganguly [22] also refers to the oc-
currence of spurious roots. It should be pointed out that
in the results of Fig. 3, our investigation of higher order
modes has been accomplished by using (3) and a 10x10
matrix, (i.e., fifth-order approximation, P=Q=35). Evi-
dently the zeroth-order solution, due to lack of either J, or
E,, cannot give accurate and reliable results.
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C. Characteristic Impedance

Since the wave propagation is of hybrid-mode type in
these structures, a precise and convenient definition of
characteristic impedance is difficult. For instance, in nor-
mal microstrip, the total conduction currents in the two
conductors are not even equal! However, a tentative defi-
nition of characteristic impedance used by other investiga-
tors is employed here, and the values are computed. As
examples, the impedances of both shielded and coupled
microstrips have been obtained by the following defini-
tions:

2 . .
Zy= _P;);v_e{ , for microstrip
Power . .
Zy= FoE for coupled microstrip  (7)

where

+w
I,= f J,(x)dx, integration being over a complete strip.

Fig. 4 shows the results for shielded coupled microstrip
in which the surrounding walls are chosen, such that they
approximate well to an open structure. In this sketch solid
lines indicate the zeroth-order solution, while dotted lines
present the higher order of estimation, (fifth order). The
current distribution for zeroth-order approximation was
assumed of (1/2w)(1+|x/w*) [9], [5]- As seen from Fig,
4, the accuracy of the zeroth-order solution depends on
the separation of the two conductors, which means that
with tight coupling, a zeroth-order solution should be
treated cautiously. The frequency dependence of imped-
ances has also been investigated and compared with re-
sults published by Krage and Haddad {10], and an agree-
ment within 1 percent or better has been obtained.

D. Attenuation

To evaluate attenuation due to dielectric and conductor
losses, the following methods are used.

Dielectric losses: Perturbation theory is used, based on
1) the loss tangent being sufficiently small, and 2) fields
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for the lossless condition, which are first computed, being
used as the perturbed fields. To find an expression for o,
Maxwell’s equations are written for both lossy and lossless
conditions, and then by applying Green’s theorem to the
integrals the following formula is obtained:

we tan 8f |Eol*dS

S, el

®)

ad=
2Re onx H%-d,dS
S

where Sy, is the area covered by dielectric, and § is the
complete cross section. Subscript zero denotes the unper-
turbed fields. The above formulation was implemented in
the computer program yielding impedances. As a com-
parison, shielded microstrip and shielded inverted micro-
strip are computed, and the side walls are located such
that their effect becomes negligible. Figs. 5 and 6(a) give
results for these two structures, and fairly good agreement
is apparent with the available data [11], [12]. The advan-
tage of this method over the two other (quasi-TEM)
approximations can be noticed in the numerator of (8)
where an extra term with E, has been included, and
contributed particularly at high frequencies, as in Fig. 5.
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Fig. 6(a). Dielectric and conductor losses of shielded inverted micro-

strip for different linewidth. (b).

shielded microstrip for different linewidth.

Fig. 7 exhibits the dielectric losses incurred in coupled
microstrip lines and also the accuracy of the two different
order of solutions.

Conductor losses: Attenuation due to the imperfect con-
ductors is obtained via a conventional perturbation for-
mula, viz.,

R [ |H[al
C
a,= ©)
2 Re onngﬂzdS
S

where R, is the surface resistance [12], and [H,| is the
amplitude of magnetic field at the conducting surfaces for
the lossless case. The required fields are derived by the
spectral-domain method and substituted in the expression
for a. and a,. Conductor losses of microstrip, coupled
microstrip, and inverted microstrip have been computed
and depicted in Figs. 6(b), 7, and 6(a), respectively.
Although H fields are calculated for an infinitely thin
strip, it would be a good approximation to the case, where
t<h, (¢ is the thickness of strip, and A4 is the height of
dielectric) and also the integration of |H,| around the strip
is valid when ¢ 8, where § is the skin depth. As it appears
from Fig. 6(b), conductor losses are very sensitive to the
order of solution. This could be attributed to the more
accurate approximation of the fields by higher order solu-
tion, particularly near to the edges, which is very im-
portant for the conductor loss integral. Comparison of the
result by this method (Fig. 6(a)) and those published very
recently for inverted microstrip shows a discrepancy of up
to 12 percent. This discrepancy can be attributed to two
facts. First, due to the overestimation described in [12],
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Fig. 7. Dielectric and conductor losses of shielded coupled microstrip
versus line separation.

and second, because of the additional side walls used in
this theory. For w/h=1, these walls are sufficiently dis-
tant to have negligible effect, but certainly they can affect
the fields when w/h=4. Conductor losses for microstrip
have also been investigated and compared with those
given by Schneider [13] and Pucel [14] who followed the
same theory presented by Wheeler [15]. In both cases
lower values of conductor losses are now predicted, and it
appears that their methods overestimated the conductor
losses, as in fact observed by [16] and [17], especially at
high impedance lines. Fig. 7 shows the conducting losses
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incurred in the coupled microstrip lines. It is evident that
due to high concentration of the fields around the gap in
the tight coupling for the odd mode, iosses should be
larger than that for the even mode, and it decreases as the
strips are laid more apart. In one particular separation of
the strips, losses for even and odd modes become equal;
with increasing separation odd-mode losses become less
than even-mode losses, and at the limit when they are far
enough apart, they both have the same value which is
equal to microstrip losses. This phenomenon has also been
noticed in [18] where it refers to the lower value of
dielectric losses in the odd-mode case which causes the
intersection of the two curves at a smaller separation.

III.

A higher order solution of the spectral-domain analysis
for shielded planar structures has been studied by the
introduction of Legendre polynomials and trigonometric
functions as basis functions. It is found that the correct
choice gives faster convergence, and that more accurate
and reliable solutions are indeed obtained by increasing
the order of matrix and number of Fourier terms (more
Fourier terms leading to better satisfaction of Parseval’s
identity). Higher order modes of microstrip, when E, is
even, were also sought and compared with the other
available sources. Characteristic impedance and losses of
some structures were computed, and it was found that
although the zeroth-order solution can be useful for many
practical structures, more precision is achieved by higher
order of solution and is specially necessary for conductor
losses, where a poor estimation of fields near the edges
can lead to serious errors. The availability of the higher
order solution, (as in the program package) clearly allows
one to check the accuracy of the zeroth-order solution.

CONCLUSION:
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