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the dispersive regime. It would appear that a more de-

tailed examination of these theories is needed before any

of their results can be used as a standard for comparison

when 21/t?l.
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Microstrip and Coplanar
Dispersion and for
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Abstract-For the anafysis of coplanar- and microstrip-type stroetur~

a higher order solution of the speetraf-domain approach is introduced.

Legendre polynomials are used as the basis functions for fields having

singularities near the edgea, leading to fast convergence to the exact

solution. A perturbation tecfndque is combined with the spectral-domain

method to evaluate condnctor sod dielectric losses in rnicrostrip, inverted

rnicrostrip, and coupled mfcrostrip in the metaUlc enclosure. Computations

of characteristic impedance and losses incurred in severst structures ars

also presented. Ceutraf processing unit (CPU) time on an IBM 360/65 for

the zeroth-order approximation ranges from 1 to about 5 s for the whole

computation, and increases if higher order of solution is requested for

better aeeuracy. The calculation of attenuation dne to corrrhretor losses is

found to be particularly sensitive to order of approximation, so that the

generalfy used “zerotb-order” solution is inadequate. A user-oriented

program package has been written, including options on order of mmfq

order of solution (i.e., of approximation), impedance, attenuation+ and

numfxw of substrates. Afthough written for single or eonpled micrdrip,

tie program can be adapted for arWrary arrangements of thin coplanar

conductors. The program is deaeribed separately.
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I. INTRODUCTION

T HE WIDESPREAD use of MIC’S in recent years

has caused rapid progress in the theory and technol-

ogy of it. The very first transmission line used in MIC

was, indeed, microstrip laid on the dielectric substrate,

and then other transmission lines such as slot line, sus-

pended microstrip, and so on, were introduced and im-

proved.

Initially, the analysis for this class of transmission line
was invariably a quasi-TEM approximation, except for

slot line where Cohn [1] introduced a frequency depen-

dent solution because of its different nature. Although a

quasi-TEM solution at low frequency can yield satisfac-

tory ‘results, at high frequency its weakness becomes ap-

parent. To feature the frequency dependence of these

lines, one must consider a hybrid mode analysis which in

turn is more tedious, and in some cases requires enormous

computing time. This dispersion analysis was studied by

various workers and by various methods. For instance,
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Fig. 1. Shielded multilayer dielectric with arbitrary coplanar

conductors.

Mittra and Itoh [2] solved shielded microstrip problems

via an integral equation, and Denlinger [3] cast the open

version of it into the spectral domain and then solved the

transcendental equations by means of a coupled integral-

equation method.

In 1973 and 1974, Itoh and Mittra [4], [5] used a

spectral-domain approach together with Galerkin’s

method to solve both shielded and unshielded rnicrostrip.

This combination reduced computing time drastically in

contrast to the other (integral-equation) methods which

required much computing time, as well as memory. This

theory was developed and modified for multilayers and

multiconductor structures by the authors [6] where a

transfer matrix fulfills all the boundary conditions be-

tween successive dielectric layers. This approach has now

been extended further by the authors, by including and

studying 1) the calculation of attenuation due to dielectric

and conductor loss, 2) calculation of characteristic imped-

ance, 3) inclusion of Legendre polynomials, as well as

trigonometric basis functions for the field or current den-

sity, 4) convergence for various orders of matrix and

number of basis functions, and 5) consideration of higher

order modes, as well as the cutoff free mode. To amplify

on 4) above, the method converges rapidly to the “exact”

solution of the zero thickness, perfectly conducting struc-

ture of Fig. 1. Subject only to small tan 8 of the dielectric,

and high conductivity of the metal, calculation of losses

are also “exact in the limit”, and do not involve empirical

approximations (as, for instance, in Jansen [20]).

As part of this study, a user-orientated program

package has been developed and is described elsewhere

[21] for the above calculation, with options on various

coplanar conductors on singular or multilayer substrates.

Results have been checked against most available struc-

tures such as slot line, coupled microstrip, suspended or

shielded inverted rnicrostrip, and so on. The importance

of the losses in the MIC is a significant point which can

be quantified by this method. Dielectric and conductor

losses are both investigated through a perturbation for-

mulation. Conductor losses are found to be particularly

sensitive to choice of basis function, and some earlier

theories are found to be inadequate.

As the finite spectral-domain theory has been described

for shielded microstrip [5] and generalized for shielded

multilayer multiconductor structures [6], just a brief re-

view is given here. Fig. 1 shows a generic cross sectior]l of

multilayer and multiconductor structure. Potential funct-

ions and, consequently, fields in each layer can be written

as follows:

~=j(%w’)
Z1 +:(x,y)e-~pz

Hzi =j
(H% @(x ~)e-,flz

B “ ‘

i=l, z,... ,n+l. (1)

Casting the above fields in the spectral domain, by finite

Fourier transform in the x direction, and satisfying

boundary conditions at the interfaces of the consecutive

layers, leads to the following matrix form:

(2)

where tilda (-) specifies fields or currents in the spectral

domain. A dual form of the above matrix representation is

given by

(3)

l?. and ~, used in both matrixes are transforms of the

electric field and current density at the interface where the

conductors are laid. Whether it is advantageous to use (2)

or (3) depends upon the type of conductor arrangement;

for instance, in the shielded microstrip case, (2) is pre-

ferred and in the case of shielded slot, (3). Both matrix

forms can be employed for any problem, but accurate

results given by one of them may be obtained easier and

faster. This matter will be clarified later on in the script.

Consider (3) and let E= and E, be expressed in terms of

a complete set of basis functions, truncated to

EX = ~ am~xm(X)
~=1

(4)

After transformation of EX and E= into the spectral

domain, substituting into (3) and using Galerkin’s method

as well as Parseval’s theorem, the result is a set of P t Q

homogeneous simultaneous equations with P+ Q un-

known, whose nontrivial solution yields the propagation

constant of the structure.

A. Basis Functions and Convergence

To approximate either fields or currents across the

interface where conductors are laid, a complete set of

functions is required. Legendre polynomials are used for
those having unbounded behavior near edges, while trigo-
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Fig. 2. Dependence of propagation constant on matrix order (P+ Q)
and number of Fourier terms (n).

nometric functions are employed for bounded fields. Both

functions have Fourier transforms in closed form. Use of

Legendre polynomials may be justified if the generating

function is considered, which is given by

(1-2tx+t’)-’”2= j Pn(x) t“
~=()

and in the limit t+ 1:

{2(1-x)}-’/’= ~ Pn(x) (5)
n=O

where the left side indicates a singularity similar to that

occurring in this type of problem [7]. Therefore, by choos-

ing Legendre polynomials it is expected to have a fast

convergence to the related fields. To test the convergence,

two different problems are treated; the first one is micro-

strip and the second is shielded coplanar waveguide.

From this discussion and the consideration of Fig. 2, the

following expansions are valid:

E.= i amP)n_,{(x-w-t)/t)
m=]

EZ= ~ bm sin {mr(x-w)/2t}, w<lxl<w+2t.
~=1

(6)

The rest of the spectral-domain solution continues as
described above in the text. A computer program imple-

menting the calculation has been developed, and the re-

sults are depicted in Fig. 2(a) and (b) for various orders of

matrix (order = P+ Q, P= Q), and number of Fourier

terms. Fig. 2(a) shows how the results improve by increas-
ing the number of Legendre polynomials and virtually

complete convergence is obtained by introducing a matrix

of order 8 if an error of 1 percent or better is acceptable.

From Fig. 2(b), where curves for shielded coplanar wave-

guide are sketched, we see the convergence with increas-

ing order of matrix and number of Fourier terms. Solu-

tions have also been obtained with P#Q and sometimes

this is advantageous, such as for very accurate results with

microstrip at low frequencies. It is found that in structures

where the field or current is approximated over a small

distance, a good solution can be achieved by a low order

of matrix, or even the zeroth-order solution [5], [6]. Conse-

quently, these results highlight the advantages of either (2)

or (3) in relevant problems. Results have been checked

against [5], [6], and [8], always with very good agreement.

Central processing unit (CPU) time clearly depends on the

number of regions, order of matrix and number of Fourier

terms. Usually for a matrix of order 8, CPU time will not

exceed 5 s per point.

B. Higher Order Modes

At a high frequency of operation, existence of an en-

closure causes propagation of higher order modes. To

show the capability of the spectral-domain approach in

analyzing these modes, shielded microstrip is brought

under examination, and results are compared with those

issued by Yamashita [8] and Mittra [2].

Comparison with Yamashita (who employed the in-

tegral-equation method with nonuniform discretization)

gave agreement within the readability of the quoted re-

sults. Mittra used almost the same techniques, but near

the end of the analysis he casts the obtained equations

into a new form, (i.e., into “auxiliary” equations) where in

turn, this new set of equations gives the opportunity of

rapid convergence due to the asymptotic decrease of their
coefficients.

Between the dominant and the first high-order modes

of Fig. 3, Mittra [2] gives an additional mode. Our

spectral-domain program also gives a solution close to

Mittra’s, but study of the associated electric field across

the air–dielectric interface shows it to be a spurious

nonphysical solution. Ganguly [22] also refers to the oc-

currence of spurious roots. It should be pointed out that

in the results of Fig. 3, our investigation of higher order

modes has been accomplished by using (3) and a 10x 10

matrix, (i.e., fifth-order approximation, P= Q = 5). Evi-

dently the zeroth-order solution, due to lack of either JX or

E=, cannot give accurate and reliable results.
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Fig. 3. Higher order modes of shielded microstrip

C. Characteristic Impedance

Since the wave propagation is of hybrid-mode type in

these structures, a precise and convenient definition of

characteristic impedance is difficult. For instance, in nor-

mal microstrip, the total conduction currents in the two

conductors are not even equal ! However, a tentative defi-

nition of characteristic impedance used by other investiga-

tors is employed here, and the values are computed. As

examples, the impedances of both shielded and coupled

microstrips have been obtained by the following defini-

tions:

~ _ 2 Power
o— for microstrip

I; ‘

~ = Power
o for coupled microstrip

I; ‘
(7)

where

Iz=f+w ( ).JZ x dx, integration being over a complete strip.
—w

Fig. 4 shows the results for shielded coupled rnicrostrip

in which the surrounding walls are chosen, such that they

approximate well to an open structure. In this sketch solid

lines indicate the zeroth-order solution, while dotted lines

present the higher order of estimation, (fifth order). The

current distribution for zeroth-order approximation was

assumed of (1 /2w)(l + Ix/ w\3) [9], [5]. As seen from Fig.

4, the accuracy of the zeroth-order solution depends on

the separation of the two conductors, which means that

with tight coupling, a zeroth-order solution should be

treated cautiously. The frequency dependence of imped-

ances has also been investigated and compared with re-

sults published by Krage and Haddad [10], and an agree-

ment within 1 percent or better has been obtained.

D. Attenuation

To evaluate attenuation due to dielectric and conductor

losses, the following methods are used.

Dielectric losses: Perturbation theory is used, based on

1) the loss tangent being sufficiently small, and 2) fields
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Fig. 5. Dielectric losses of shielded microstrip versus frequency.

for the lossless condition, which are first computed, being

used as the perturbed fields. To find an expression for ad,

Maxwell’s equations are written for both 10SSYand lossless

conditions, and then by applying Green’s theorem to the

integrals the following formula is obtained:

uc tan 8Jll E. 2dS
s~,e,ad=

J

(8)

2 Re EoXH~,iizdS
s

where S&l is the area covered by dielectric, and S is the
complete cross section. Subscript zero denotes the unpert-

urbed fields. The above formulation was implemented in

the computer program yielding impedances. As a com-

parison, shielded microstrip and shielded inverted micro-

strip are computed, and the side walls are located such

that their effect becomes negligible. Figs. 5 and 6(a) give

results for these two structures, and fairly good agreement

is apparent with the available data [11], [12]. The advan-

tage of this method over the two other (quasi-TEM)

approximations can be noticed in the numerator of (8)

where an extra term with E= has been included, und

contributed particularly at high frequencies, as in Fig. 5.
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dielectric losses incurred in coupled

also the accuracy of the two different

Attenuation due to the imperfect con-

via a conventional perturbation for-

where R, is the surface resistance [12], and ]H, I is the

amplitude of magnetic field at the conducting surfaces for

the lossless case. The required fields are derived by the

spectral-domain method and substituted in the expression

for rxC and ad. Conductor losses of microstrip, coupled

microstrip, and inverted microstrip have been computed

and depicted in Figs. 6(b), 7, and 6(a), respectively.
Although H fields are calculated for an infinitely thin

strip, it would be a good approximation to the case, where

t<<h, (t is the thickness of strip, and h is the height of

dielectric) and also the integration of IHtl around the strip

is valid when t>>8,where rS is the skin depth. As it appears

from Fig. 6(b), conductor losses are very sensitive to the

order of solution. This could be attributed to the more

accurate approximation of the fields by higher order solu-

tion, particularly near to the edges, which is very im-

portant for the conductor loss integral. Comparison of the

result by this method (Fig. 6(a)) and those published very

recently for inverted microstrip shows a discrepancy of up

to 12 percent. This discrepancy can be attributed to two

facts. First, due to the overestimation described in [12],
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Fig. 7. Dielectric and conductor losses of shielded coupled rnicrostrip
versus line separation.

and second, because of the additional side walls used in

this theory. For w/h =1, these walls are sufficiently dis-

tant to have negligible effect, but certainly they can affect

the fields when w//r =4. Conductor losses for microstrip

have also been investigated and compared with those

given by Schneider [13] and Pucel [14] who followed the

same theory presented by Wheeler [15]. In both cases

lower values of conductor losses are now predicted, and it

appears that their methods overestimated the conductor

losses, as in fact observed by [16] and [17], especially at

high impedance lines. Fig. 7 shows the conducting losses
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incurred in the coupled microstrip lines. It is evident that

due to high concentration of the fields around the gap in

the tight coupling for the odd mode, losses should be

larger than that for the even mode, and it decreases as the

strips are laid more apart. In one particular separation of

the strips, losses for even and odd modes become equal;

with increasing separation odd-mode losses become less

than even-mode losses, and at the limit when they are far

enough apart, they both have the same value which is

equal to microstrip losses. This phenomenon has also been

noticed in [18] where it refers to the lower value of

dielectric losses in the odd-mode case which causes the

intersection of the two curves at a smaller separation.

III. CONCLUSION:

A higher order solution of the spectral-domain analysis

for shielded planar structures has been studied by the

introduction of Legendre polynomials and trigonometric

functions as basis functions. lt is found that the correct

choice gives faster convergence, and that more accurate

and reliable solutions are indeed obtained by increasing

the order of matrix and number of Fourier terms (more

Fourier terms leading to better satisfaction of Parseval’s

identity). Higher order modes of microstrip, when EZ is

even, were also sought and compared with the other

available sources. Characteristic impedance and losses of

some structures were computed, and it was found that

although the zeroth-order solution can be useful for many

practical structures, more precision is achieved by higher

order of solution and is specially necessary for conductor

losses, where a poor estimation of fields near the edges

can lead to serious errors. The availability of the higher

order solution, (as in the program package) clearly allows

one to check the accuracy of the zeroth-order solution.
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